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SUMMARY

The flow of an incompressible viscous electrically conducting fluid over o rotating disk
is investigated. [n addition, a circular magnetic field is also imposed at the disk. One physical
irterest in this flow lies in the possibility of using such a magnetic field to shield a rotating body
from excessive heating. Similarity assumptions lead to a reduction of the governing equations to
a set of ordinary differential equations. These are integrated numerically. Some approximate
solutions are also obtained.

The role of the magnetic field here is to thicken the flow boundary layer and to reduce
the strength of the axial flow field. That means, the magnetic field has a diffusing and stiffening
effect upon the flow field. As a consequence, the frictional moment at the disk is reduced.

For sufficiently large values of the applied magnetic field, the boundary layer separates from

the surface of the disk.



1. Introduction

. The aim of the present investigation is to gain further insight into the fundamentals of the
rotating flow of a conducting fluid over a rotating disk. The corresponding non-magnetic case was

M 2

first studied by von Karmdn ~. Cochran = calculated more accurate solution by numerical integration
3

of the equations, Bé'dewcdf(_) solved numerically the related problem of the flow produced over

an infinite stationary plane in fluid which is rotating with uniform angular velocity at an infinite

distance from the plane.

The problem discussed in details in this paper is the steady flow of an incompressible
viscous electrically conducting fluid over a rotating disk. There is no magnetic field in the
distant fluid, but in the boundary layer, there is a field in the tangential direction, generated
by external means within the disk itself. One physical interest in this flow lies in the possibility
of using such a field to shield a rotating body from excessive heating. Since the total pressure
of a fluid element in this case constitutes of the magnetic and static pressure. The fluid
pressure at the surface of the disk is then reduced by the amount of the magnetic pressure of the
applied field. For a compressible fluid this would imply an equivalent reduction in density,
and hence in heat transfer, The similar situation in a boundary layer flow over a magnetized

4

plate was discussed by Glavert .

An interesting feature of the magnetic effect is that the flow boundary layer thickened and
the strength of the oxial flow field reduced as the strength of the magnetic field is increased. This
result is completely in accord with the one obtained earlier by Pao and Long,(é) When the applied
magnetic field is sufficiently strong, the boundary oner(m)ay separate from the surface of the disk.

4

This is in agreement with the result obtained by Galuert ~ in a similar situation. Another

prevailing feature is that the flow and the magnetic fields are diffused farther out as the kinematic

viscosity or the magnetic diffusivity is increased.



2. Formulation of the Problem

Consider an incompressible, viscous, elecirically conducting fluid in axisymmetric steady

: 5)
motion. The governing equations in cylindrical coordinates are
2
au w7 2P 2f of g 2 U
UsFtW e -7 = T v Foh thar - wv(u-5), 0
? v 2 2 2
u(ZrrB)rwit s S B -5, o
v ? 2P oh 2h
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aF 2z =0 (5)
2 2 ¢
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with Vi= Sptrar Tt
where (u,v.w) and ( . F h) denote the components of velocity and of
normalized magnetic field strength in the direction of the (r, 8, z ) coordinate lines; »
is the kinematic viscosity, and 77 = 1/(ug) is the magnetic diffusivity, with u the

magnetic permeability and g the electrical conductivity. We have written

(F,8.h) = (Fdi, b) dpff and P = (Frgen)/2 4 P/ 4

(€]



is

where  ( f,,j,,/;,) are the components of the magnetic field, p is fluid pressure,

uniform density and %, is the potential per unit mass of the conservative body forces. It is

also assumed that the net charge density is zero, and that ¥, ¢, and p are constant.

Equations (4) and (5) can be integrated by infroducing two scalar functions,

y(r,z) and Alr,z), such that

Y B 4 _ 1Y

U=-rw > Y (8)
=_d32A _ 12A

f= r oz /7_7‘27 (®)

We now seek a similarity solution of the following form:
4d 4
Vo= -y r’nicy , NA=-0e)frng),

v = rwals) , J - rQmMa) *

(10)

!
P = Far*+rass), s=zle/m?, |

where (o) is the characteristic angular speed of the swirling velocity field and (2. is the

corresponding characteristic angular magnetic field strength. It follows that, by virtue of (8) and

(9
]
u = orm’ , w=-2000)%m | an
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where the primes indicate differentiotion with respect to 3 . Substitution of (10) - (12) into

(1) - (3), (6) and (7) leads to the ordinary differential equations

(m'* = 2mm” - 62) - (wio2mn”- (32/”72) -m” e N = o, (13)
n :

2(mG -m’G) —Zﬁ(nM’-n’M)*‘Gf =0, (14)

S+ 4(mm’'-nwY+2m”= o0 , (15)

Bm” + za({BM’m—Gn) =0

/

(16)
n"+ 200(mn’-mn) =0, (17
where Ol = ))/77 is the magnetic Prandt! number and B8 = 2 / @
Equation (15) can be integrated once
S+ 2(mi+m/-n*) = C | (18)
where C is a constant of integration. Hence the solution of equations (13) - (15), (17)

and (18) with appropriate boundary conditions will yield a magnetohydrodynamic rotating flow
over a rotating or a stationary disk which satisfies the exact magnetohydrodynamic Navier-
Stokes equations and the equations of magnetic induction. Since a general problem of this
type involves quite a few parameters, we will only consider a rather simplified case in details in

the following section.



3. Rotating Disk and Circular Magnetic Field
Let us consider the flow over a rotating disk with a uniform angular velocity w in
a fluid othgrwise at rest. In addition, an axial electric current of uniform current density
J, is imposed at the disk. Equivalently, the tangential magnetic field component is imposed at

the disk which reads

; =0r with 0 =[€—%= const.

and f and h are absent. The boundary conditions now assume the following form:
=0 : m=0, m=0, G=1, Mm=1, S=o0, (19)
§= 00 : G=0 ., M=0, m=o0,. (20)

It is noted that conditions (20) correspond to zero rotation and zero current density
at z= 0o . If a uniform rotation and a uniform axial current density are maintained

at the distant fluid, conditions (20) for G and M must be replaced by

g = o0 : G=a, M=5b, (20a)
where a and b are constants. The governing equations, with n = 0, become
mi- 2mm” -G+ (32M2- m” + A =0, (1)
2(mG’ - m'&) +G" = 0, (22)

M’ + 20mpM =0, (23)



S + 2(m+m')= 0. (24)

The constant of integration in (24) vanishes because S=m =m’=0 at £ =0. The constant A
can be determined by the boundary conditionsat £ =00: G=0, M=0, m’ =0, together
with the assumption that m” = m™=0. Thus it follows from (21) that = 0. Equation (24)
is essentially an algebraic equation for S . Since, once m is found from (2.1) -(23), Sis

then known by (24). We will, therefore, consider equations (21) = (23) only. The three

governing equations (21) ~ (23) are of seventh order altogether, hence, the seven boundary conditi

in (19) and (20) are sufficient to make the problem o determinate one.

(a) Approximate Solution
©)
An approximate solution following the Fettis method  can be obtained readily.

ons

This approximate solution reveals the essential features of the flow and magnetic fields very clearly.

Besides, it is very useful to the starting of the numerical integration in the next section.

The asymptotic solution is: m = —24 .G =0, M =0, and complete solution is assumed to be

of the form:

A
m= 5+ em+ myt Emgr o,
= 2
G—€G,+€G—z+€3é}3+---, (25)
M = eM + epm, + €3M3+---;

A= Lim 2mz)
I—oo

where € is a parameter whose exact significance will be brought out later, and
is an as yet unspecified constant. Inserting the series (25) into equations (21)-(23), and

equating like powers of ¢ , the following succession of linear equations is obtained:

77?.,’” + Am,” -0,

G’”‘"‘ AG_}/ - 0 y



M + XAM] = 0,

" k-1 ,
Myt AT = a%_/ M 2771,;771&”_0. “ @Gt FZMLM;&—L , (26)
" G’/ Aot 2( / _ /
G’k + A 2 = L=ZI m‘;G'é_i m,:é-rﬁ_‘) »
” / f-l ’
My + cAMg =-2Z 20tm;My_; |
i=1
A= 2,34, ...
The conditions (20) at infinity will be satisfied if
my(3) — 0
mgey — 0
as $ — oo ’
Gy (§) — o (27)
Mﬂ(S) -_—> 0 ﬁ,= ,)21 3,
while the conditions (19) at §= 0 will be met if
m/(0) =0, G)=1, M© =1, (
28)
mp(0) =0 , GO=0, Mg(@)=0, HR=234,

and if ¢ = 1. However, the condition m(0) = 0 will not be satisfied unless the constant A had been

so chosen that

L+ m0) +mu)+ - =0 (29)

Equation (29) will be a transcendental equation for the determination of the unknown constant A,

The solution to the above system is listed as follows:



mo = A/Z Vi
77'.LI = 0 ’
- - - 20LAT 3
m, = (qge A g ase )/ AT,
m, = 0, [ Go)
~AS -2A7 -3A% ~4A . =-20lA%
my= [Gee  +Gse 4+ Gge v ae My gpe
- - 7
+age (2 +1) AT _ Bpe=(XTDAS L o o 4o(AS ]/A ,
Mme=0 )
—A%
G-'= € )
G,= 0 , ) .
_ -3AZ —(24+ 1) AZ
Go= [ be™+ be "+ bye J/ A GD
G4= 0,
-tAZ
M, = e ) ]
My - O (o+ )AL 3:AS
—ot - (0l +DAS - (% - 4
Ms = [c,e A, e + Ge tGe ]/A [ (32)
M4.= o J
where 2 2
a< iy _ & a. = __F
1= 2 T zat(im20) ¢ % =7, 37 4x? (1-200) -
b= 6 by =~ b= B
1S T2 T o3 (2o0F1) 2 12 PV FP 1y ’

oy 12043
C:‘O‘[ou-l 4(o(+2)] 1202 (1-20) (’_ot+l )
o2 g2 ] ox? A
/7

2

&K= - 0L+I[ ! +cx(l—20() G = it , @ = 1200%( 1= 200)
! a
4= —[Tﬁ' + F t 2G5+ 20lap + (20L+1)% + 2(ot+1) Oy + 4ota,,] ,
| o2 a, / B¢
os= g (a+2b) | %= G=3% , BT 3-8 ’
_ u@s(g0i= 200+1) - B2 a, _Gs(el-ott1) +b3 - g7 a - 200a; - Bq
% X (20 + 1) ’ ? 2(ott ¥ (2o(+1) ! " 80 (dot- 1)



It is noted that for O¢=é,, fhe. I'Hospital's rule of taking limits has to be used. The above
approximate solution coverges quite rapidly provided that 82 is small or O is large. A comparison
of the 4 - term approximate solution with the "exact" numerical solution reveals that they are
practically indistinguishable for the range 82/06 €0.1. When 82 becomes larger and o¢ smaller,
the convergence of the approximate series solution becomes slower. The series solution fail to

converge when *<1 and 8 2> 1. The above feature is also indicated by the numerical solution.

2
Let us consider a special case =1 and B =1, It can be verified readily that the solution
is
a* -a¥* _a';
m o= - G=e s ; M= e p

1
which corresponds to a suction at the rotating disk with a strength a*(v@): In the limit as the
suction vanishes, we have G —+1 and M= 1. That is, the fluid and the disk undergo a rigid

body rotation, This is a common feature of the magnetohydrodynamic flow in an aligned field
5,7,8,9

When @< 1 and 8 3 1, then it appears that no steady similarity solution is possible unless
there is suction acting, which prevents the boundary layer from leaving the disk, This is in accord
with the conclusion reached by Feffis(é,) and Rogers and Lance(]—O) in a similar situation, It is,
therefore, anticipated that for each valve of the suction parameter a* there are critical values of

the pair (¢, ) corresponding to which no steady flow is possible.

(b) Numerical Integration

The differential equations requiring numerical methods for their solution are equations

(21) - (23) . Solutions of these equations are required which satisfy the boundary conditions (19)

and (20).

-10 -



The asymptotic solution of the obove system is

m — '2A
-AS

G — be as § — o0 , (33)
-tAS

M — cé

where A, b, and c are constant. In order to start the numerical integration of the above
system at ¥ =0, it is necessary to estimate the values of m”(0), G’'(0) and M’(0) . Reasonably
accurate estimates can be made using the values from the approximate solution. With these values,

the system was integrated from zero to 5 = 10, The behavior of the solution is tested by the following

scheme:
-A%
G = b + bae I
-olA25%
M = ¢ + e © ' at £=9.8,9.9,10. (34)
o= A+ dae”ME
and
m(10) = A/2
Three conditions were imposed:
b, = O, ¢, =0 and d, = 0. (35)

This was the basis for the numerical integration. The conditions (35) can be satisfied by adjusting
the valves of m”(0), G/(O) and M/(0). The computation indicates that once the conditions (35) are
satisfied, then the following relation also follows

A = A = A (36)

correct to the third significant figure. Hence, the asymptotic conditions (33) are fulfilled, and the

numerical solution is thus obtained.

-11 -



(c) Numerical Results

Many results have been mentioned in the previous sections, but some graphs and tables are
presented here to emphasize the more important points, Figures 1 -3 show the velocity and
magnetic fields for various values ofocand B . We observe that as 8 increases, the axial velocity
strength decreases while the boundary layer thickness of the flow and the magnetic fields increases.
Hence, an increase of the circular magnetic field strength has an effect of thickening the boundary
layer and reducing the strength of the axial velocity field. Figure 4 shows the effect of the magnetic
Prandtl number & . I is observed that the boundary layer thickness of the flow and the magnetic
fields decreases as Oc increases, The kinematic viscosity ¥ is known, from the similarity form (10),
to diffuse the momentum farther out from the boundary. Hence the effect of the magnetic Prandtl
number confirms that the magnetic diffusivity is also to diffuse the magnetic field out and thus
thickens the boundary layer.

The derivatives of the velocity and the magnetic fields at the disk are given in Table 1
for various values of ®and B. From these values, some other characteristics of the flow and
magnetic fields can be computed, in particular the frictional moment on the disk. Neglecting

edge effects, we may write the moment of the frictional forces acting on a disk of large but

finite radius R as

M= —zn[ ripy (22) ar

! 3
= - zlfrrR" (v@3)Z2 G’(0) . (37)
Or introducing the dimensionless frictional moment coefficient, we have
y M _ _Go Re = Rao s
M™ TP (R R PEI oo (38)

-12 -



The frictional moment coefficient, Cy, and the axial velocity strength at distance fluid, A , are
. — . 2 .

further illustrated in Fig. 5. It is observed that CM and A decrease as 3 increases or as OL

decreases. Other inferesting feature of the flow and magnetic fields is the distribution of the

vorticity and the electrical current density. By virtue of (10) - (12) we obtain

1
g,- = —-‘?Tv = - (0.)3/V)Z rél'l(f)
J
£, = ::‘ -—2—"“_’-= ()’ Fm” (%)
§.= LZ(v) = 2@G(S) 39)
and

£V J .
Jr = _(/T) 2z _?0(@/;;) rm’(s)
Jo = (40)

where (&,,%6,%.) and (Jr, Jg , Jo) are the components of the vorticity and the current density
respectively in the r-, 8-, z- directions. The current lines as well as the vortex lines start at
the disk and spread out radially. The current density and the vorticity are zero at a great distance
from the disk. Hence no current lines or vortex lines penetrate to z = @, However, in the special
case whenol= 1, 82 = 1, the stiffening effect of the magnetic field is so strong that all current
lines and vortex lines penetrate to z = o0 and the current density and vorticity becomes axial and
uniform everywhere. It should be noted that J, at the disk is a derived current just like §. at the
disk is a derived vorticity.

The total pressure S can readily be obtained from equation (24). In particular,

S(0) = 0 and §(e9) = - A2/2. Thus, the total pressure difference across the boundary layer is

2
A" /2 which decreases as the magnetic strength increases.

-13 -



4. Rotating Flow in A Circular Magnetic Field

‘ €)

A magnetohydrodynamic flow of Bodewadt ~  can be considered here. In this case, the
fluid at a large distance above a stationary disk rotates at a uniform angular velocity @. In
addition, an axial electric current of uniform current density Jo is imposed at z =90, Thus,

the tangential magnetic field component at z = o0 is

4
j =0r , with ﬂ=(;r)l-;-r9 = const.,
and f and g are absent. The similarity form in (10) - (12) is still valid in this case and the

boundary conditions now assume the following form:

Z=0:m=0,m=0, G=0, M=0, S =0, (41

T =e0: G=1, M=1, m'=0 (42)
We have used the conditions that the disk is stationary and electrically insulated, thus no
current or vorticity in the axial plane passing through the disk. [f a uniform rotation and a
uniform axial current density are maintained at the disk, conditions (41) for G and M must be
replaced by

=0 G=a, M=b, (41a)
where a and b are constants. The governing equations given in (21) ~ (24) remain valid,
except that the constant X\ in this case is no longer zero. X can be determined by the
boundary conditionsat =00 : G=1, M=1, m’=0, together with the assumption that
m”’= m” =0. Thus, it folloyvs from (21) that X =1 - 82. Therefore, three governing
equations (21) ~ (23) together with the boundary conditions (41) and (42) constitute a determinate

system. Then, the approximate solution and the numerical integration can be carried out in

a similar manner,

- 14 -
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5. Conclusions

A more general problem with both the disk and the distant fluid in rotation together
with more general magnetic field can be treated in a similar manner. But, so many parameters
involved have prohibited us from going-into details for such a general problem. Nonetheless,
some of the conclusions derived from the detailed. investigation of the particular case (rotating
disk and circular magnetic field) might still be valid for the general problem.

For the case of rotating disk and circular magnetic field, we have the following
conclusions:

(1) An increase of the magnetic field stregnth has an effect of thickening the boundary
layer and reducing the strength of the axial flow field. In other words, the magnetic field has
a diffusing and stiffening effect upon the flow field. As a consequence, the frictional moment
at the disk is also reduced when the magnetic field is increased.

(2) The boundary layer thickness of the flow and the magnetic fields increases as the
kinematic viscosity or the magnetic diffusivity increases. This confirms their respective diffusive
roles,

(3) The total pressure (magnetic and static) difference across the boundary layer is
reduced as the magnetic field is increased. Moreover, the fluid static pressure at the surface is
further reduced by the amount of the magnetic pressure of the applied field. For a compressible
fluid this would imply an equivalent deduction in density, and hence in heat transfer.

(4) In the special case when 0t=1, 82 =1, the fluid and the disk undergo a rigid body
rotation, thus indicating the beginning of the boundary layer separation. In the numerical integration,
it is found that the computation becomes extremely sensitive to the choice of m”(0), G “(0) and

2

M/(O) as E increases, When 8 is large , the region of large gradients, or boundary layer,

- 15 -



seems to have moved away from the disk and large shears are appearing at the distant fluid. That

means, the boundary layer separates from the surface of the disk for sufficiently large values of the

applied field strength. This confirms the importance of magnetically induced separation as an effect
4)

to be reckoned with in magnetohydrodynamics

(5) The suction at the disk prevents the boundary layer from leaving the disk.

- 16 -
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Table 1. Values of m”(0), G’(0), M/(O) and 2 m(ee) for various values of & and B

B m”(0) G’ (0) M’ (0) 2 m(eo)
0 0.51024 -0.61592 -0.26227 0.886
vl .os5 0.50886 -0.61501 -0.26170 0.882
© 1 0.50470 -0.61223 -0.25997 0.871
i .15 0.49778 -0.60749 -0.25696 0.852
3 .2 0. 48806 -0.60054 -0.25236 0.823
.25 0.47550 -0.59102 -0.24573 0.778
.3 0.46016 -0.57776 -0.23514 0.700
0 0.51024 -0.61592 -0.39625 0.886
.1 0.50558 -0.61362 -0.39469 0.880
~ | .2 0.49154 -0.60657 -0.38991 0.867
" .3 0.46786 -0.59423 -0.38152 0.844
.4 0.43406 -0.57552 -0.36872 0.809
3 .5 0.38936 -0.54834 -0.34998 0.755
.6 0.33266 -0.50822 -0.32186 0.669
.7 0.26296 -0.44319 -0.27457 0.506
0 0.51024 -0.61592 -1.13399 0.886
.2 0.50058 -0.61378 -1.12916 0.884
L .4 0.47120 -0.60717 -1.11380 0.878
N .6 0.42078 -0.59540 -1.08638 0.870
3| .8 0.34650 -0.57695 -1.04322 0.857
1.0 0.24202 -0.54816 -0.97545 0.838
12 0.08714 -0. 49600 -0.85155 0.805
1.3 -0.07124 -0.41399 -0.65578 0.757

-18~-
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Figure |. Velocity and magnetic field distribution for &= 0.5 and various valves of 8.

(d) g curves
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